Arduino & Friends

M1DST

Back in the day...

list p=16f84a

- 2 include
- COUNT1 EQU 08h
- COUNT2 EQU 09h
- org 0x00
- goto start
- start bsf STATUS, RPO ;bank 1
- 0 movlw 0xFE
- 1 movwf TRISB ;set all PORTB input except for RB0
- 2 bcf STATUS, RPO ;bank 0
- main bsf PORTB, 0 ;make RB0 high
- 5 call delay ;delay subroutine
- 6 bcf PORTB, 0 ;make RB0 low
- goto main

delay

- loop1 decfsz COUNT1,1 ;decrement COUNT1 variable until zero
- 1 goto loop1
- decfsz COUNT2,1 ;decrement COUNT2, if not zero, go back to loop1
- 5 100PI
- 4 goto loop1
- 5 return
 - end

Arduino Board

The name Arduino comes from a bar in Ivrea, Italy, where some of the founders of the project used to meet.

Created in 2005 by Massimo Banzi & David Cuartielles

Open Source Hardware

Coding is accessible & transferrable \rightarrow (C++, Java etc)

Arduino...

is the go-to gear for hams, hobbyists, students, and anyone with a gadgetry dream.

rose out of another formidable challenge: how to teach students to create electronics, fast.

Getting Started

SW Installation: Arduino (v.1.0+)
 Fritzing
 Drivers (FTDI)

Arduino Shields

PCB

Built Shield

Inserted Shield

Arduino Shields

MP3 Trigger

LCD

Components

Name	Image	Туре	Function	Notes
Push Button		Digital Input	Switch - Closes or opens circuit	Polarized, needs resistor
Trim potentiometer	(Ce	Analog Input	Variable resistor	Also called a Trimpot.
Photoresistor		Analog Input	Light Dependent Resistor (LDR)	Resistance varies with light.
Relay		Digital Output	Switch driven by a small signal	Used to control larger voltages
Temp Sensor		Analog Input	Temp Dependent Resistor	
Flex Sensor		Analog Input	Variable resistor	
Soft Trimpot	Aspectrasyntax	Analog Input	Variable resistor	Careful of shorts
RGB LED		Dig & Analog Output	16,777,216 different colors	Ooh So pretty.

Components

Components

Breadboard

Standard Solderless (Color may vary)

+ -	abcde 100000	fghij 100001	+ -
		Image: space of the system Im	

x1

Super cheap shield £4.50

Prototyping Circuits Solderless Breadboard

One of the most useful tools in an engineer or Maker's toolkit. The three most important things:

- A breadboard is easier than soldering
- A lot of those little holes are connected, which ones?
- Sometimes breadboards break

What's a Breadboard?

Solderless Breadboard

Each row (horiz.) of 5 holes are connected.

Vertical columns – called power bus are connected vertically

Using the Breadboard to built a simple circuit

Use the breadboard to wire up a single LED with a 330 Ohm Resistor (Orange-Orange-Brown).

<u>Note</u>: the longer leg on the LED is the positive leg and the shorter leg is the negative

Fritzing View of Breadboard Circuit

What happens when you break the circuit? What if you wanted to add more than one LED?

Adding control – let's use the Arduino and start programming!!!

Concepts: INPUT vs. OUTPUT

Referenced from the perspective of the microcontroller (electrical board).

Inputs is a signal / information going into the board.

Output is any signal exiting the board.

Almost all systems that use physical computing will have some form of output

What are some examples of Outputs?

Concepts: INPUT vs. OUTPUT

Referenced from the perspective of the microcontroller (electrical board).

Inputs is a signal / information going into the board.

Output is any signal exiting the board.

Concepts: Analog vs. Digital

Microcontrollers are **digital** devices – ON or OFF. Also called – discrete.

analog signals are anything that can be a full range of values. What are some examples? More on this later...

Arduino

Integrated Development Environment (IDE)

💿 BareMinimum Arduino 1.0.3 – 🗆 🗙	
File Edit Sketch Tools Help	Two required functions /
	rwo required runctions /
BareMinimum	methods / routines:
void setup() (
// put your setup code here, to run once:	
}	void setup ()
void loop() (ſ
<pre>// put your main code here, to run repeatedly:</pre>	t
}	// runs once
	}
	void loop ()
~	ſ
< >	
	// ronpats
	// repears
error & status messages	}
LilyPad Arduino w Al mega328 on CUM28	

Settings: Tools \rightarrow Serial Port

00	sketch_may01a Arduino 1.0.3 – 🗖		
File Edit Sketch	Tools Help		
sketch_may01	Auto Format Ctrl+T Archive Sketch Fix Encoding & Reload		
	Serial Monitor Ctrl+Shift+M		
	Board •		
	Serial Port	✓ COM3	
	Programmer Burn Bootloader		

Your computer communicates to the Arduino microcontroller via a serial port \rightarrow through a USB-Serial adapter.

Check to make sure that the drivers are properly installed.

Settings: Tools \rightarrow Board

sketch_jun17a Arduino 1.0.5			ATtiny85 (external 20 MHz clock) ATtiny44 (internal 1 MHz clock)
File Edit Sketch	Tools Help Auto Format Ctrl+T Archive Sketch Fix Encoding & Reload Serial Monitor Ctrl+Shift+M		ATtiny44 (internal 8 MHz clock) ATtiny44 (external 20 MHz clock) ATtiny84 (internal 1 MHz clock) ATtiny84 (internal 8 MHz clock) ATtiny84 (external 20 MHz clock)
	ArduBlock	• 4	Arduino Uno
	Board	. 4	Arduino Duemilanove w/ ATmega328 Arduino Diecimila or Duemilanove w/ ATmega168
	Serial Port		Arduino Diecinina of Duernianove w/ Armegaros Arduino Nano w/ ATmega328
	Programmer	4	Arduino Nano w/ ATmega168
	Burn Bootloader	4	Arduino Mega 2560 or Mega ADK
		4	Arduino Mega (ATmega1280)
		4	Arduino Leonardo
		4	Arduino Esplora

Next, double-check that the proper board is selected under the Tools \rightarrow Board menu.

Arduino & Arduino Compatible Boards

Let's get to coding...

Project #1 – Blink

"Hello World" of Physical Computing

Psuedo-code – how should this work?

Comments, Comments, Comments

Comments are for you – the programmer and your friends...or anyone else human that might read your code.

// this is for single line comments
// it's good to put a description at the
 top and before anything `tricky'
/# this is for all in the second second

/* this is for multi-line comments
 Like this...

And this

Three commands to know...

```
pinMode(pin, INPUT/OUTPUT);
  ex: pinMode(13, OUTPUT);
digitalWrite(pin, HIGH/LOW);
  <u>ex</u>: digitalWrite(13, HIGH);
delay(time ms);
  ex: delay(2500); // delay of 2.5 sec.
// NOTE: -> commands are CASE-sensitive
```

Project #1: Wiring Diagram

Move the green wire from the power bus to <u>pin</u> <u>13 (or any other</u> Digital I/O pin on the Arduino board.

Image created in Fritzing

A few simple challenges Let's make LED#13 blink!

Challenge 1a – blink with a 200 ms second interval.

Challenge 1b – blink to mimic a heartbeat

Challenge 1c – find the fastest blink that the human eye can still detect...

1 ms delay? 2 ms delay? 3 ms delay???

Try adding other LEDs

Can you blink two, three, or four LEDs? (Hint: Each LED will need it's own 330Ω resistor.)

Generate your own morse code flashing

How about → Knight Rider? Disco? Police Light?

Programming Concepts: Variables

Programming Concepts: Variable Types

Variable Types:

Fading in and Fading Out (Analog or Digital?)

A few pins on the Arduino allow for us to modify the output to mimic an analog signal.

This is done by a technique called: <u>Pulse Width Modulation (PWM)</u>

Concepts: Analog vs. Digital

To create an analog signal, the microcontroller uses a technique called PWM. By varying the <u>duty</u> <u>cycle</u>, we can mimic an "average" analog voltage.

Project #2 – Fading Introducing a new command...

Move one of your LED pins over to Pin 9

In Arduino, open up:

File \rightarrow Examples \rightarrow 01.Basics \rightarrow Fade

<u></u>	Fade Arduino 1.0.5	. 🗆	×
File Edit S	ketch Tools Help		
			P
Fade			
/*			^
Fade			
This usin	example shows how to fade an LED on pin 9 g the analogWrite() function.		
This */	example code is in the public domain.		

Fade - Code Review

00	Fade Arduino 1.0.5	□ ×		
File Edit Sketch Tools Help				
		<mark>,⊘</mark> •		
Fade				
/* Fade		^		
This example shows how to fade an LED on pin 9 using the analogWrite() function.				
This example code */	is in the public domain.			
<pre>int led = 9; int brightness = 0; int fadeAmount = 5;</pre>	// the pin that the LED is attached to // how bright the LED is // how many points to fade the LED by			

Fade - Code Review

```
void setup() {
  // declare pin 9 to be an output:
  pinMode(led, OUTPUT);
// the loop routine runs over and over again forever:
void loop()
           {
  // set the brightness of pin 9:
  analogWrite(led, brightness);
  // change the brightness for next time through the loop:
  brightness = brightness + fadeAmount;
  // reverse the direction of the fading at the ends of the fade:
  if (brightness == 0 || brightness == 255) {
    fadeAmount = -fadeAmount ;
  }
  // wait for 30 milliseconds to see the dimming effect
  delay(30);
```


Color Mixing Tri-color LED

This a standard – Common Cathode LED

This means the negative side of the LEDs are all tied to Ground.

Project 3 – RGB LED

Note: The longest leg of the RGB LED is the Common Cathode. This goes to GND.

Use pins 5, 6, & 9

How many unique colors can you create?

of unique colors = $256 \cdot 256 \cdot 256$ = 16,777,216 colors!

Color Picker	# 604860		
	# EUIDSD		
			H: 340 S: 88 B: 88 R: 224 G: 27 B: 93
			Add to My Colors
		CLEAR	

Use Colorpicker.com or experiment on your own.

Pick out a few colors that you want to try recreating for a lamp or lighting display...

Play around with this with
 the analogWrite()
 command.

RGB LED Color Mixing

```
int redPin = 5;
int greenPin = 6;
int bluePin = 9;
void setup()
{
    pinMode(redPin, OUTPUT);
    pinMode(greenPin, OUTPUT);
    pinMode(bluePin, OUTPUT);
```

}

RGB LED Color Mixing

```
void loop()
{
    analogWrite(redPin, 255);
    analogWrite (greenPin, 255);
    analogWrite (bluePin, 255);
```

}

Project: Mood Lamp / Light Sculpture

Driving Motors or other High Current Loads

NPN Transistor (Common Emitter "Amplifier" Circuit)

Input

Input is any signal entering an electrical system.

- Both digital and analog sensors are forms of input
- Input can also take many other forms: Keyboards, a mouse, infrared sensors, biometric sensors, or just plain voltage from a circuit

Project #4 – Digital Input

In Arduino, open up: File \rightarrow Examples \rightarrow 02.Digital \rightarrow Button

Digital Sensors (a.k.a. Switches) Pull-up Resistor (circuit)

Digital Sensors (a.k.a. Switches) Add an indicator LED to Pin 13

Digital Input

- Connect digital input to your Arduino using Pins # 0 13 (Although pins # 0 & 1 are also used for programming)
- Digital Input needs a pinMode command: pinMode (pinNumber, INPUT); Make sure to use ALL CAPS for INPUT
- To get a digital reading:
 int buttonState = digitalRead (pinNumber);
- Digital Input values are only **HIGH** (On) or **LOW** (Off)

Digital Sensors

- Digital sensors are more straight forward than Analog
- No matter what the sensor there are only two settings: On and Off
- Signal is always either HIGH (On) or LOW (Off)
- Voltage signal for HIGH will be a little less than 5V on your Uno
- Voltage signal for LOW will be 0V on most systems

We set it equal to the function digitalRead(pushButton)

We declare a variable as an integer.

The function digitalRead() will return the value 1 or 0, depending on whether the button is being pressed or not being pressed.

int buttonState = digitalRead(pushButton);

We name it buttonState

Recall that the pushButton variable stores the number 2

The value 1 or 0 will be saved in the variable buttonState.

Programming: Conditional Statements if()

Boolean Operators

<boolean></boolean>			1>		Description	
()	==	()	i	is equal?
()	!=	()	i	is not equal?
()	>	()		greater than
()	>=	()		greater than or equal
()	<	()		less than
()	<=	()	I	less than or equal

Trimpot (Potentiometer) Variable Resistor

Analog Sensors 3 Pin Potentiometer = var. resistor (<u>circuit</u>) a.k.a. Voltage Divider Circuit

analogRead()

Arduino uses a 10-bit A/D Converter:

- this means that you get input values from 0 to 1023
 - $0 \lor \rightarrow 0$
 - $5 \lor \rightarrow 1023$

Ex:

int sensorValue = analogRead(A0);

Using Serial Communication

Method used to transfer data between two devices.

Serial Monitor & analogRead()

Serial Monitor & analogRead()

Analog Sensors

Examples:

Sensors	Variables
Mic	soundVolume
Photoresistor	lightLevel
Potentiometer	dialPosition
Temp Sensor	temperature
Flex Sensor	bend
Accelerometer	tilt/acceleration

Additional Serial Communication Sending a Message

```
void loop ( )
{
  Serial.print("Hands on ") ;
  Serial.print("Learning ") ;
  Serial.println("is Fun!!!") ;
```


Serial Communication: Serial Debugging

```
void loop()
   int xVar = 10;
   Serial.print ( "Variable xVar is " )
                                                                                      ₹
                                                                     COM24
   Serial.println ( xVar ) ;
                                                                                        Send
                                                    Variable xVar is 10
                                                    Variable xVar is 10

    Autoscroll

                                                                            No line ending 🚽 9600 baud
```

Serial Communication: Serial Troubleshooting

Virtual Electrical Prototyping Project started in 2007 by the Interaction Design Lab at the University of Applied Science Potsdam, Germany

Open Source

Prototypes: Document, Share, Teach, Manufacture

Other Boards

Each has their own advantages and costs.

Netduino

GHI Fez

ESP8266

ESP32

Teensy

Picaxe
QUESTIONS?